Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nitric Oxide ; 142: 16-25, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979932

RESUMEN

The oxygen partial pressure within the interstitial space (PO2is; mmHg) provides the driving force for oxygen diffusion into the myocyte thereby supporting oxidative phosphorylation. We tested the hypothesis that potentiation of the nitric oxide pathway with sildenafil (phosphodiesterase type 5 inhibitor) would enhance PO2is during muscle metabolic transitions, thereby slowing PO2is on- and accelerating PO2is off-kinetics. The rat spinotrapezius muscle (n = 17) was exposed for PO2is measurements via phosphorescence quenching under control (CON), low-dose sildenafil (1 mg/kg i.a., SIL1) and high-dose sildenafil (7 mg/kg i.a., SIL7). Data were collected at rest and during submaximal twitch contractions (1 Hz, 4-6 V, 3 min) and recovery (3 min). Mean arterial blood pressure (MAP; mmHg) was reduced with both SIL1 (pre:132 ± 5; post:99 ± 5) and SIL7 (pre:111 ± 6; post:99 ± 4) (p < 0.05). SIL7 elevated resting PO2is (18.4 ± 1.1) relative to both CON (15.7 ± 0.7) and SIL1 (15.2 ± 0.7) (p < 0.05). In addition, SIL7 increased end-recovery PO2is (17.7 ± 1.6) compared to CON (12.8 ± 0.9) and SIL1 (13.4 ± 0.8) (p < 0.05). The overall PO2is response during recovery (i.e., area under the PO2is curve) was greater in SIL7 (4107 ± 444) compared to CON (3493 ± 222) and SIL1 (3114 ± 205 mmHg s) (p < 0.05). Contrary to our hypothesis, there was no impact of acute SIL (1 or 7 mg/kg) on the speed of the PO2is response during contractions or recovery (p > 0.05). However, sildenafil lowered MAP and improved skeletal muscle interstitial oxygenation in healthy rats. Specifically, SIL7 enhanced PO2is at rest and during recovery from submaximal muscle contractions. Potentiation of the nitric oxide pathway with sildenafil enhances microvascular blood-myocyte O2 transport and is expected to improve repeated bouts of contractile activity.


Asunto(s)
Óxido Nítrico , Consumo de Oxígeno , Ratas , Animales , Ratas Sprague-Dawley , Óxido Nítrico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Citrato de Sildenafil/farmacología , Músculo Esquelético/metabolismo , Contracción Muscular , Oxígeno/metabolismo , Microcirculación
2.
J Physiol ; 600(22): 4777-4778, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321641
3.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575093

RESUMEN

Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.


Asunto(s)
Miofibrillas , Sarcómeros , Animales , Conectina/química , Conectina/genética , Conectina/metabolismo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Ratas , Sarcómeros/metabolismo
4.
Nitric Oxide ; 121: 34-44, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35123062

RESUMEN

Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.


Asunto(s)
Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Humanos , Cinética , Contracción Muscular
5.
Free Radic Biol Med ; 175: 95-107, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478834

RESUMEN

Hemopexin (Hpx) is a crucial defense protein against heme liberated from degraded hemoglobin during hemolysis. High heme stress creates an imbalance in Hpx bioavailability, favoring heme accumulation and downstream pathophysiological responses leading to cardiopulmonary disease progression in sickle cell disease (SCD) patients. Here, we evaluated a model of murine SCD, which was designed to accelerate red blood cell sickling, pulmonary hypertension, right ventricular dysfunction, and exercise intolerance by exposure of the mice to moderate hypobaric hypoxia. The sequence of pathophysiology in this model tracks with circulatory heme accumulation, lipid oxidation, extensive remodeling of the pulmonary vasculature, and fibrosis. We hypothesized that Hpx replacement for an extended period would improve exercise tolerance measured by critical speed as a clinically meaningful therapeutic endpoint. Further, we sought to define the effects of Hpx on upstream cardiopulmonary function, histopathology, and tissue oxidation. Our data shows that tri-weekly administrations of Hpx for three months dose-dependently reduced heme exposure and pulmonary hypertension while improving cardiac pressure-volume relationships and exercise tolerance. Furthermore, Hpx administration dose-dependently attenuated pulmonary fibrosis and oxidative modifications in the lung and myocardium of the right ventricle. Observations in our SCD murine model are consistent with pulmonary vascular and right ventricular pathology at autopsy in SCD patients having suffered from severe pulmonary hypertension, right ventricular dysfunction, and sudden cardiac death. This study provides a translational evaluation supported by a rigorous outcome analysis demonstrating therapeutic proof-of-concept for Hpx replacement in SCD.


Asunto(s)
Anemia de Células Falciformes , Hemopexina , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Hemo , Hemoglobinas , Hemólisis , Humanos , Ratones
6.
Respir Physiol Neurobiol ; 292: 103710, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34091075

RESUMEN

Diaphragm muscle blood flow (BF) and vascular conductance (VC) are elevated with chronic heart failure (HF) during exercise. Exercise training (ExT) elicits beneficial respiratory muscle and pulmonary system adaptations in HF. We hypothesized that diaphragm BF and VC would be lower in HF rats following ExT than their sedentary counterparts (Sed). Respiratory muscle BFs and mean arterial pressure were measured via radiolabeled microspheres and carotid artery catheter, respectively, during submaximal treadmill exercise (20 m/min, 5 % grade). During exercise, no differences were present between HF + ExT and HF + Sed in diaphragm BFs (201 ± 36 vs. 227 ± 44 mL/min/100 g) or VCs (both, p > 0.05). HF + ExT compared to HF + Sed had lower intercostal BF (27 ± 3 vs. 41 ± 5 mL/min/100 g) and VC (0.21 ± 0.02 vs. 0.31 ± 0.04 mL/min/mmHg/100 g) during exercise (both, p < 0.05). Further, HF + ExT compared to HF + Sed had lower transversus abdominis BF (20 ± 1 vs. 35 ± 6 mL/min/100 g) and VC (0.14 ± 0.02 vs. 0.27 ± 0.05 mL/min/mmHg/100 g) during exercise (both, p < 0.05). These data suggest that exercise training lowers the intercostal and transversus abdominis BF responses in HF rats during submaximal treadmill exercise.


Asunto(s)
Músculos Abdominales/fisiopatología , Circulación Sanguínea/fisiología , Diafragma/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Músculos Intercostales/fisiopatología , Condicionamiento Físico Animal/fisiología , Músculos Abdominales/irrigación sanguínea , Animales , Diafragma/irrigación sanguínea , Modelos Animales de Enfermedad , Músculos Intercostales/irrigación sanguínea , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
7.
J Appl Physiol (1985) ; 130(4): 914-922, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33475460

RESUMEN

Heart failure (HF) results in a myriad of central and peripheral abnormalities that impair the ability to sustain skeletal muscle contractions and, therefore, limit tolerance to exercise. Chief among these abnormalities is the lowered maximal oxygen uptake, which is brought about by reduced cardiac output and exacerbated by O2 delivery-utilization mismatch within the active skeletal muscle. Impaired nitric oxide (NO) bioavailability is considered to play a vital role in the vascular dysfunction of both reduced and preserved ejection fraction HF (HFrEF and HFpEF, respectively), leading to the pursuit of therapies aimed at restoring NO levels in these patient populations. Considering the complementary role of the nitrate-nitrite-NO pathway in the regulation of enzymatic NO signaling, this review explores the potential utility of inorganic nitrate interventions to increase NO bioavailability in the HFrEF and HFpEF patient population. Although many preclinical investigations have suggested that enhanced reduction of nitrite to NO in low Po2 and pH environments may make a nitrate-based therapy especially efficacious in patients with HF, inconsistent results have been found thus far in clinical settings. This brief review provides a summary of the effectiveness (or lack thereof) of inorganic nitrate interventions on exercise tolerance in patients with HFrEF and HFpEF. Focus is also given to practical considerations and current gaps in the literature to facilitate the development of effective nitrate-based interventions to improve exercise tolerance in patients with HF.


Asunto(s)
Insuficiencia Cardíaca , Suplementos Dietéticos , Tolerancia al Ejercicio , Humanos , Nitratos , Consumo de Oxígeno , Volumen Sistólico
9.
J Appl Physiol (1985) ; 129(3): 474-482, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702277

RESUMEN

Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.


Asunto(s)
Anemia de Células Falciformes , Beta vulgaris , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio , Humanos , Ratones , Nitratos , Consumo de Oxígeno
10.
J Physiol ; 598(15): 3187-3202, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445225

RESUMEN

KEY POINTS: Within skeletal muscle the greatest resistance to oxygen transport is thought to reside across the short distance at the red blood cell-myocyte interface. These structures generate a significant transmural oxygen pressure (PO2 ) gradient in mixed fibre-type muscle. Increasing O2 flux across the capillary wall during exercise depends on: (i) the transmural O2 pressure gradient, which is maintained in mixed-fibre muscle, and/or (ii) elevating diffusing properties between microvascular and interstitial compartments resulting, in part, from microvascular haemodynamics and red blood cell distribution. We evaluated the PO2 within the microvascular and interstitial spaces of muscles spanning the slow- to fast-twitch fibre and high- to low-oxidative capacity spectrums, at rest and during contractions, to assess the magnitude of transcapillary PO2 gradients in rats. Our findings demonstrate that, across the metabolic rest-contraction transition, the transcapillary pressure gradient for O2 flux is: (i) maintained in all muscle types, and (ii) the lowest in contracting highly oxidative fast-twitch muscle. ABSTRACT: In mixed fibre-type skeletal muscle transcapillary PO2 gradients (PO2 mv-PO2 is; microvascular and interstitial, respectively) drive O2 flux across the blood-myocyte interface where the greatest resistance to that O2 flux resides. We assessed a broad spectrum of fibre-type and oxidative-capacity rat muscles across the rest-to-contraction (1 Hz, 120 s) transient to test the novel hypotheses that: (i) slow-twitch PO2 is would be greater than fast-twitch, (ii) muscles with greater oxidative capacity have greater PO2 is than glycolytic counterparts, and (iii) whether PO2 mv-PO2 is at rest is maintained during contractions across all muscle types. PO2 mv and PO2 is were determined via phosphorescence quenching in soleus (SOL; 91% type I+IIa fibres and CSa: ∼21 µmol min-1 g-1 ), peroneal (PER; 33% and ∼20 µmol min-1 g-1 ), mixed (MG; 9% and ∼26 µmol min-1 g-1 ) and white gastrocnemius (WG; 0% and ∼8 µmol min-1 g-1 ) across the rest-contraction transient. PO2 mv was higher than PO2 is in each muscle (∼6-13 mmHg; P < 0.05). SOL PO2 isarea was greater than in the fast-twitch muscles during contractions (P < 0.05). Oxidative muscles had greater PO2 isnadir (9.4 ± 0.8, 7.4 ± 0.9 and 6.4 ± 0.4; SOL, PER and MG, respectively) than WG (3.0 ± 0.3 mmHg, P < 0.05). The magnitude of PO2 mv-PO2 is at rest decreased during contractions in MG only (∼11 to 7 mmHg; time × (PO2 mv-PO2 is) interaction, P < 0.05). These data support the hypothesis that, since transcapillary PO2 gradients during contractions are maintained in all muscle types, increased O2 flux must occur via enhanced intracapillary diffusing conductance, which is most extreme in highly oxidative fast-twitch muscle.


Asunto(s)
Contracción Muscular , Consumo de Oxígeno , Animales , Microcirculación , Músculo Esquelético/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley
11.
JCI Insight ; 4(15)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391342

RESUMEN

Circulating macrophages recruited to the lung contribute to pulmonary vascular remodeling in various forms of pulmonary hypertension (PH). In this study we investigated a macrophage phenotype characterized by intracellular iron accumulation and expression of antioxidant (HO-1), vasoactive (ET-1), and proinflammatory (IL-6) mediators observed in the lung tissue of deceased sickle cell disease (SCD) patients with diagnosed PH. To this end, we evaluated an established rat model of group 5 PH that is simultaneously exposed to free hemoglobin (Hb) and hypobaric hypoxia (HX). Here, we tested the hypothesis that pulmonary vascular remodeling observed in human SCD with concomitant PH could be replicated and mechanistically driven in our rat model by a similar macrophage phenotype with iron accumulation and expression of a similar mixture of antioxidant (HO-1), vasoactive (ET-1), and inflammatory (IL-6) proteins. Our data suggest phenotypic similarities between pulmonary perivascular macrophages in our rat model and human SCD with PH, indicating a potentially novel maladaptive immune response to concomitant bouts of Hb and HX exposure. Moreover, by knocking out circulating macrophages with gadolinium trichloride (GdCl3), the response to combined Hb and hypobaric HX was significantly attenuated in rats, suggesting a critical role for macrophages in the exacerbation of SCD PH.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Hemoglobinas/metabolismo , Hipertensión Pulmonar/inmunología , Hipoxia/complicaciones , Macrófagos/inmunología , Remodelación Vascular/inmunología , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/inmunología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gadolinio/administración & dosificación , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/patología , Hipoxia/sangre , Hipoxia/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Arteria Pulmonar/patología , Ratas
12.
Drug Deliv ; 26(1): 147-157, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30822171

RESUMEN

Hypoxic pulmonary vasoconstriction (HPV) is a well-characterized vascular response to low oxygen pressures and is involved in life-threatening conditions such as high-altitude pulmonary edema (HAPE) and pulmonary arterial hypertension (PAH). While the efficacy of oral therapies can be affected by drug metabolism, or dose-limiting systemic toxicity, inhaled treatment via pressured metered dose inhalers (pMDI) may be an effective, nontoxic, practical alternative. We hypothesized that a stable water-in-perfluorooctyl bromide (PFOB) emulsion that provides solubility in common pMDI propellants, engineered for intrapulmonary delivery of pulmonary vasodilators, reverses HPV during acute hypoxia (HX). Male Sprague Dawley rats received two 10-min bouts of HX (13% O2) with 20 min of room air and drug application between exposures. Treatment groups: intrapulmonary delivery (PUL) of (1) saline; (2) ambrisentan in saline (0.1 mg/kg); (3) empty emulsion; (4) emulsion encapsulating ambrisentan or sodium nitrite (NaNO2) (0.1 and 0.5 mg/kg each); and intravenous (5) ambrisentan (0.1 mg/kg) or (6) NaNO2 (0.5 mg/kg). Neither PUL of saline or empty emulsion, nor infusions of drugs prevented pulmonary artery pressure (PAP) elevation (32.6 ± 3.2, 31.5 ± 1.2, 29.3 ± 1.8, and 30.2 ± 2.5 mmHg, respectively). In contrast, PUL of aqueous ambrisentan and both drug emulsions reduced PAP by 20-30% during HX, compared to controls. IL6 expression in bronchoalveolar lavage fluid and whole lung 24 h post-PUL did not differ among cohorts. We demonstrate proof-of-concept for delivering pulmonary vasodilators via aerosolized water-in-PFOB emulsion. This concept opens a potentially feasible and effective route of treating pulmonary vascular pathologies via pMDI.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/administración & dosificación , Fluorocarburos/administración & dosificación , Hipertensión Pulmonar/tratamiento farmacológico , Edema Pulmonar/tratamiento farmacológico , Agua/administración & dosificación , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Emulsiones/metabolismo , Fluorocarburos/metabolismo , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/metabolismo , Masculino , Fenilpropionatos/administración & dosificación , Fenilpropionatos/metabolismo , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , Edema Pulmonar/diagnóstico por imagen , Edema Pulmonar/metabolismo , Piridazinas/administración & dosificación , Piridazinas/metabolismo , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Agua/metabolismo
13.
J Physiol ; 597(4): 1073-1085, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29931797

RESUMEN

KEY POINTS: Sickle cell disease (SCD) results in cardiopulmonary dysfunction, which may be exacerbated by prolonged exposure to environmental hypoxia. It is currently unknown whether exposure to mild and moderate altitude exacerbates SCD associated cardiopulmonary and systemic complications. Three months of exposure to mild (1609 m) and moderate (2438 m) altitude increased rates of haemolysis and right ventricular systolic pressures in mice with SCD compared to healthy wild-type cohorts and SCD mice at sea level. The haemodynamic changes in SCD mice that had lived at mild and moderate altitude were accompanied by changes in the balance between pulmonary vascular endothelial nitric oxide synthase and endothelin receptor expression and impaired exercise tolerance. These data demonstrate that chronic altitude exposure exacerbates the complications associated with SCD and provides pertinent information for the clinical counselling of SCD patients. ABSTRACT: Exposure to high altitude worsens symptoms and crises in patients with sickle cell disease (SCD). However, it remains unclear whether prolonged exposure to low barometric pressures exacerbates SCD aetiologies or impairs quality of life. We tested the hypothesis that, relative to wild-type (WT) mice, Berkley sickle cell mice (BERK-SS) residing at sea level, mild (1609 m) and moderate (2438 m) altitude would have a higher rate of haemolysis, impaired cardiac function and reduced exercise tolerance, and that the level of altitude would worsen these decrements. Following 3 months of altitude exposure, right ventricular systolic pressure was measured (solid-state transducer). In addition, the adaptive balance between pulmonary vascular endothelial nitric oxide synthase and endothelin was assessed in lung tissue to determine differences in pulmonary vascular adaptation and the speed/duration relationship (critical speed) was used to evaluate treadmill exercise tolerance. At all altitudes, BERK-SS mice had a significantly lower percentage haemocrit and higher total bilirubin and free haemoglobin concentration (P < 0.05 for all). right ventricular systolic pressures in BERK-SS were higher than WT at moderate altitude and also compared to BERK-SS at sea level (P < 0.05, for both). Critical speed was significantly lower in BERK-SS at mild and moderate altitude (P < 0.05). BERK-SS demonstrated exacerbated SCD complications and reduced exercise capacity associated with an increase in altitude. These results suggest that exposure to mild and moderate altitude enhances the progression of SCD in BERK-SS mice compared to healthy WT cohorts and BERK-SS mice at sea level and provides crucial information for the clinical counselling of SCD patients.


Asunto(s)
Altitud , Anemia de Células Falciformes/fisiopatología , Endotelio Vascular/fisiopatología , Pulmón/irrigación sanguínea , Esfuerzo Físico , Aclimatación , Anemia de Células Falciformes/sangre , Animales , Presión Sanguínea , Endotelinas/metabolismo , Endotelio Vascular/metabolismo , Femenino , Hemólisis , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo
14.
J Appl Physiol (1985) ; 124(6): 1519-1528, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494294

RESUMEN

The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate ([Formula: see text]) supplementation. However, it is possible that different types of [Formula: see text] supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary [Formula: see text] supplementation administered as either [Formula: see text]-rich beetroot juice (BR) or potassium [Formula: see text] (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary [Formula: see text] supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT + BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT + KNO3). During severe-intensity exercise, V̇o2peak and time to task failure were improved to a greater extent with SIT + BR than SIT and SIT + KNO3 ( P < 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT + BR compared with SIT + KNO3 ( P < 0.05). Plasma [Formula: see text] concentration fell to a greater extent during severe-intensity exercise in SIT + BR compared with SIT and SIT + KNO3 ( P < 0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention ( P > 0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT + BR compared with SIT + KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium [Formula: see text], enhanced some physiological adaptations to training.


Asunto(s)
Rendimiento Atlético , Beta vulgaris , Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético/efectos de los fármacos , Nitratos/administración & dosificación , Compuestos de Potasio/administración & dosificación , Adulto , Suplementos Dietéticos , Sinergismo Farmacológico , Femenino , Humanos , Masculino , Adulto Joven
15.
Nitric Oxide ; 76: 29-36, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29526566

RESUMEN

Free hemoglobin (Hb) associated with hemolysis extravasates into vascular tissue and depletes nitric oxide (NO), which leads to impaired vascular function and could impair skeletal muscle metabolic control during exercise. We tested the hypothesis that: 1) free Hb would extravasate into skeletal muscle tissue, reducing the contracting skeletal muscle O2 delivery/O2 utilization ratio (microvascular PO2, PO2mv) to a similar extent as that observed following NO synthase (NOS) blockade, and 2) that the Hb scavenging protein haptoglobin (Hp) would prevent Hb extravasation and inhibit these skeletal muscle tissue effects. PO2mv was measured in eight rats (phosphorescence quenching) at rest and during 180 s of electrically induced (1-Hz) twitch spinotrapezius muscle contractions (experiment 1). A second group of seven rats was also used to investigate the effects of Hb + Hp (experiment 2). For both experiments, measurements were made: 1) during control conditions, 2) following a bolus infusion of either Hb (50 mg/kg) or Hb + Hp (50 mg/kg), and 3) following local superfusion of NG-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg). Additional experiments were completed to visualize Hb extravasation into the muscular tissue using Click chemistry techniques. There were no significant differences in the PO2mv observed at rest for any condition in either experiment (p > 0.05 for all). In experiment 1, both Hb and L-NAME reduced the PO2mv significantly during the steady-state of muscle contractions when compared to control conditions with no differences between Hb and L-NAME (control: 24 ±â€¯1, Hb: 21 ±â€¯1, L-NAME: 20 ±â€¯1 mmHg, p < 0.05). In experiment 2, only L-NAME resulted in a significantly lower PO2mv during the steady-state of muscle contractions (control: 25 ± 1, Hb + Hp: 22 ± 2, L-NAME: 18 ± 1 mmHg, p < 0.05). Free Hb lowered the blood-myocyte O2 driving force to a level not significantly different from L-NAME. However, infusing Hb bound to Hp resulted in no significant differences in steady-state PO2mv during muscle contractions when compared to control. Surprisingly, we did not observe Hb accumulation in skeletal muscle tissue. Taken together these data suggests that free Hb impairs O2 delivery/utilization via a NO scavenging effect. Furthermore, the unchanged PO2mv steady-state observed following Hb + Hp further indicates that vascular compartmentalization of Hb by the scavenger protein haptoglobin may improve skeletal muscle metabolic control and potentially exercise tolerance in those afflicted with hemolytic diseases.


Asunto(s)
Hemoglobinas/metabolismo , Microvasos/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley
16.
Respir Physiol Neurobiol ; 247: 140-145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29037770

RESUMEN

Chronic heart failure (CHF) results in a greater cost of breathing and necessitates an elevated diaphragm blood flow (BF). Dietary nitrate (NO3‾) supplementation lowers the cost of exercise. We hypothesized that dietary NO3‾ supplementation would attenuate the CHF-induced greater cost of breathing and thus the heightened diaphragm BF during exercise. CHF rats received either 5days of NO3‾-rich beetroot (BR) juice (CHF+BR, n=10) or a placebo (CHF, n=10). Respiratory muscle BFs (radiolabeled microspheres) were measured at rest and during submaximal exercise (20m/min, 5% grade). Infarcted left ventricular area and normalized lung weight were not significantly different between groups. During submaximal exercise, diaphragm BF was markedly lower for CHF+BR than CHF (CHF+BR: 195±28; CHF: 309±71mL/min/100g, p=0.04). The change in diaphragm BF from rest to exercise was less (p=0.047) for CHF+BR than CHF. These findings demonstrate that dietary NO3‾ supplementation reduces the elevated diaphragm BF during exercise in CHF rats thus providing additional support for this therapeutic intervention in CHF.


Asunto(s)
Diafragma/fisiopatología , Insuficiencia Cardíaca/dietoterapia , Insuficiencia Cardíaca/fisiopatología , Actividad Motora/fisiología , Nitratos/administración & dosificación , Animales , Beta vulgaris , Enfermedad Crónica , Diafragma/irrigación sanguínea , Modelos Animales de Enfermedad , Jugos de Frutas y Vegetales , Masculino , Consumo de Oxígeno/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/fisiología
17.
Nitric Oxide ; 74: 1-9, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288804

RESUMEN

Nitric oxide (NO) modulates oxygen delivery-utilization matching in resting and contracting skeletal muscle. Recent reports indicate that neuronal NO synthase (nNOS)-mediated vasoregulation during contractions is enhanced with exercise training and impaired with chronic heart failure (HF). Consequently, we tested the hypothesis that selective nNOS inhibition (S-methyl-l-thiocitrulline; SMTC, 2.1 µmol/kg) would produce attenuated reductions in muscle blood flow during moderate/heavy submaximal exercise in sedentary HF rats compared to their healthy counterparts. In addition, SMTC was expected to evoke greater reductions in exercising muscle blood flow in trained compared to sedentary healthy and HF rats. Blood flow during submaximal treadmill running (20 min/m, 5% grade) was determined via radiolabeled microspheres pre- and post-SMTC administration in healthy sedentary (Healthy + Sed, n = 8), healthy exercise trained (Healthy + ExT, n = 8), HF sedentary (HF + Sed, left ventricular end-diastolic pressure (LVEDP) = 12 ± 1 mmHg, n = 8), and HF exercise trained (HF + ExT, LVEDP = 16 ± 2 mmHg, n = 7) rats. nNOS contribution to exercising total hindlimb blood flow (ml/min/100 g) was not increased by training in either healthy or HF groups (Healthy + Sed: 105 ± 11 vs. 108 ± 16; Healthy + ExT: 96 ± 9 vs. 91 ± 7; HF + Sed: 124 ± 6 vs. 110 ± 12; HF + ExT: 107 ± 13 vs. 101 ± 8; control vs. SMTC, respectively; p > .05 for all). Similarly, SMTC did not reduce exercising blood flow in the majority of individual hindlimb muscles in any group (p > .05 for all, except for the semitendinosus and adductor longus in HF + Sed and the adductor longus in HF + ExT; p < .05). Contrary to our hypothesis, we find no support for either upregulation of nNOS function contributing to exercise hyperemia after training or its dysregulation with chronic HF.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Hiperemia/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Condicionamiento Físico Animal , Animales , Insuficiencia Cardíaca/patología , Hiperemia/patología , Masculino , Músculo Esquelético/patología , Ratas , Ratas Sprague-Dawley
19.
PLoS One ; 12(2): e0171219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28152051

RESUMEN

It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype.


Asunto(s)
Hemoglobinas/metabolismo , Arteria Pulmonar/fisiología , Receptor Toll-Like 9/fisiología , Anemia Hemolítica/etiología , Animales , Proliferación Celular , Femenino , Hipertensión Pulmonar/etiología , Interleucina-6/fisiología , Peroxidación de Lípido , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular
20.
Respir Physiol Neurobiol ; 238: 33-40, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119150

RESUMEN

The vascular ATP-sensitive K+ (KATP) channel is a mediator of skeletal muscle microvascular oxygenation (PO2mv) during contractions in health. We tested the hypothesis that KATP channel function is preserved in chronic heart failure (CHF) and therefore its inhibition would reduce PO2mv and exacerbate the time taken to reach the PO2mv steady-state during contractions of the spinotrapezius muscle. Moreover, we hypothesized that subsequent KATP channel activation would oppose the effects of this inhibition. Muscle PO2mv (phosphorescence quenching) was measured during 180s of 1-Hz twitch contractions (∼6V) under control, glibenclamide (GLI, KATP channel antagonist; 5mg/kg) and pinacidil (PIN, KATP channel agonist; 5mg/kg) conditions in 16 male Sprague-Dawley rats with CHF induced via myocardial infarction (coronary artery ligation, left ventricular end-diastolic pressure: 18±1mmHg). GLI reduced baseline PO2mv (control: 28.3±0.9, GLI: 24.8±1.0mmHg, p<0.05), lowered mean PO2mv (average PO2mv during the overall time taken to reach the steady-state; control: 20.6±0.6, GLI: 17.6±0.3mmHg, p<0.05), and slowed the attainment of steady-state PO2mv (overall mean response time; control: 66.1±10.2, GLI: 93.6±7.8s, p<0.05). PIN opposed these effects on the baseline PO2mv, mean PO2mv and time to reach the steady-state PO2mv (p<0.05 for all vs. GLI). Inhibition of KATP channels exacerbates the transient mismatch between muscle O2 delivery and utilization in CHF rats and this effect is opposed by PIN. These data reveal that the KATP channel constitutes one of the select few well-preserved mechanisms of skeletal muscle microvascular oxygenation control in CHF.


Asunto(s)
Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Canales KATP/metabolismo , Contracción Muscular/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/uso terapéutico , Administración por Inhalación , Análisis de Varianza , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Enfermedad Crónica , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/complicaciones , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Masculino , Contracción Muscular/efectos de los fármacos , Infarto del Miocardio/etiología , Infarto del Miocardio/terapia , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...